Accretion Discs around Black Holes: Developement of Theory
نویسنده
چکیده
Standard accretion disk theory is formulated which is based on the local heat balance. The energy produced by a turbulent viscous heating is supposed to be emitted to the sides of the disc. Sources of turbulence in the accretion disc are connected with nonlinear hydrodynamic instability, convection, and magnetic field. In standard theory there are two branches of solution, optically thick, and optically thin. Advection in accretion disks is described by the differential equations what makes the theory nonlocal. Low-luminous optically thin accretion disc model with advection at some suggestions may become advectively dominated, carrying almost all the energy inside the black hole. The proper account of magnetic filed in the process of accretion limits the energy advected into a black hole, efficiency of accretion should exceed ∼ 1/4 of the standard accretion disk model efficiency.
منابع مشابه
Calculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.
In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...
متن کاملNumerical models of rotating accretion flows around black holes
Numerical, two-dimensional, time-dependent hydrodynamical models of geometrically thick accretion discs around black holes are presented. Accretion flows with non-effective radiation cooling (ADAFs) can be both convectively stable or unstable depending on the value of the viscosity parameter α. The high viscosity flows (α ≃ 1) are stable and have a strong equatorial inflow and bipolar outflows....
متن کاملIron line profiles from black hole accretion discs with spiral velocity structure
We calculate the iron line profiles from accretion discs with spiral velocity structures around Schwarzschild black holes. We find that quasi-periodic bumps appear in the the profiles, thereby providing a test for spiral wave patterns. This study is motivated by recent work showing that spiral density waves can result from MHD instabilities even in non-self-gravitating discs, and by improved sp...
متن کاملSelf-gravitating accretion discs
— I review recent progresses in the dynamics and the evolution of self-gravitating accretion discs. Accretion discs are a fundamental component of several astrophysical systems on very diverse scales, and can be found around supermassive black holes in Active Galactic Nuclei (AGN), and also in our Galaxy around stellar mass compact objects and around young stars. Notwithstanding the specific di...
متن کاملThe runaway instability of thick discs around black holes . II . Non constant angular momentum discs
We present results from a comprehensive number of relativistic, time-dependent, axisymmetric simulations of the runaway instability of non-constant angular momentum thick discs around black holes. This second paper in the series extends earlier results where only constant angular momentum discs were considered. All relevant aspects of the theory of stationary thick discs around rotating black h...
متن کامل